Categorize Documents
with Machine Learning

The Importance
of Good Ticketing
Systems for Sysadmins

JOURNAL

Since 1994: The Original Magazine of the Linux Community

Tips for Cutting
the Cable Cord

Solve
Physics
Problems
with Linux

-~ Software
~ Embedded §
Linuxand

~the IoT

APRIL 2017 | ISSUE 276
http://www.linuxjournal.com

WATCH:
ISSUE
OVERVIEW

http://www.linuxjournal.com
http://linuxjournal.com/276-video

CONTENTS itz

FEATURES
76 88

http://www.linuxjournal.com

FEATURE

ROBOTS
AND LINUX,

A MATCH MADE IN SPACE

As robots become more prevalent, they soon will be
working alongside humans, relieving some of the
burdens as well as taking on more of the dangers.
The systems to make that happen are being built

today, and they are using Linux in a major way.

PAUL FERRETTI

NEXT

Feature: Key
Considerations for °
Software Updates for
Embedded Linux and IoT

O PREVIOUS
New Products

76 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

grew up in the sixties, during the height of the space race.

| vividly remember watching the first moon landing, and |

have loved space and all things space since those early days.

Alas, | did not become an astronaut; instead, | ended up in
the tech field writing software. And as much as | loved NASA, the
closest | have come to working with NASA is vicariously through
my nephew who works at the Johnson Space Center in Houston. | spent
many summers with my nephew building and programming robots,
and it's a hobby that | still enjoy very much.

So, when | became aware that one of NASA’s Centennial
Challenges was called the Space Robotics Challenge, | immediately
reached out to several friends to see if they were interested in
forming a team. After getting commitments from four other
like-minded individuals, | registered our team to compete in

the challenge.

NASA AND THE SPACE ROBOTICS CHALLENGE
The Centennial Challenges program is part of NASA’s Space Technology
Mission Directorate (STMD). The STMD creates various challenges in order
to bring together members of industry, academia and the government with
the goal being the advancement of innovation in key areas of technology
important to the agency. These challenges are meant to engage individuals
and teams from all walks of life. Whether you are a hobbyist, such as
myself, or a member of a team from a tier-one technology lab, such as MIT,
NASA has made these challenges accessible to everyone.

The technical coordinator for the Space Robotics Challenge (SRC) is
NineSights, and according to its website, “The SRC focuses on developing

77 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

File Panels Help

ffqinteract | Grmevecames Clseea f Rastamen S Messue - 0PeseESumate - DNavGoal § PaEshPont 4 =

*pOEn -~ RO =% | hik0|F,

(© Time
““““ ime Facton S Time: T Reratons: FPa ROS Time: | 67.96 ROS Elapsed: 67.92 wall Time: |1352424196.73 | wall Elapsed: | 327.35 Experimental

Reset Left-Click: Rotate, Middle-Click: Move /Y. Right-Click/Mouse Wheel: Zoom. Shift: More eptions. s

ol g 23) UL Elivermingt-many... EDefault B [Deskton recorde... BB o)) M) B 6@ e

Figure 1. Using RVIZ to Check Line of Sight

software to increase the autonomy of dexterous mobile robots in
humanoid format—specifically NASA’s R5 robot—so they can complete
specific tasks during space travel or after landing on other planets (such
as Mars), as well as on Earth.”

The SRC involved two rounds of competition: the first round, better
known as the qualifying round, and the second round, referred to as the
virtual competition. The qualifying round involved two tasks: a visual task
and a mobility task. The visual task had the robot positioned in front of a
panel that consisted of a number of LED lights. The lights would flash in a
random sequence, and the task was to identify the location and color of
the lights in the correct sequence (Figure 1).

The mobility task started with the robot standing behind a red line
approximately four meters from a closed door. The robot needed to walk
up to the door, press a button to open the door and then walk through
the door for approximately one meter before ending up past a red line
located on the pathway. The scoring for this task was based solely on the
time it took the robot to walk from red line to red line (Figures 2 and 3).

As you can see, this challenge had two very important features: robots

78 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

Figure 2. Robot in Starting Position

Figure 3. Robot in Finished Position

and space. That was all | needed, but | was soon to find out the challenge
included a third element that was of great interest to me. The operating
platform that the challenge would be working in was Linux-based. In
addition, the challenge would be using the Robotics Operating System

79 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

(ROS), a simulation software called Gazebo and the Space Robotics
Challenge Simulation (SRCSim), a predefined simulation that included
the environment for the qualifying tasks, created for the Space Robotics
Challenge by the Open Source Robotics Foundation (OSRF).

ROBOTICS AND LINUX

Robots have been around for a long time, and during most of that time,
if you wanted to build your own system, you had to build the hardware,
and you also had to create the software that would control the robot.
This is no small task, and it required several skill sets that not everyone
had. Unfortunately, the need for special skills was a deterrent that kept
potential participants from jumping in to the robotics arena.

These days, there's a tremendous number of robot kits, like those made
by Vex Robotics and Makeblock, which utilize an Arduino controller.
Robotics kits like these greatly have reduced the need to fabricate your
own robot; however, if you possess the necessary talent to fabricate a
robot from scratch, you still can do so. For a long time, what the robotics
community was lacking was a solid software platform with which to work.

In 2006, Microsoft was the first major player to enter the mainstream
robotics software field with Robotics Studio version 1.0. Later, in 2008,
Microsoft released Robotics Developer Studio (MRDS). The MRDS is a
Windows-based environment for robot control and simulation. As with
all Microsoft software, it is closed source. The primary programming
language for MRDS is C#. Besides the closed-source nature of the MRDS,
it has been described as overly complicated and requires a great deal of
overhead. Along with that, the latest version, RDS4, has not had an update
on its website since June 2012. A more sustainable solution was needed.
Software sustainability increases when the maximum number of people are
able to access it. Enter the Open Source community, led by Linux.

In 2007, Willow Garage, a robotics incubator in California, stepped in
to extend work that was done by others, mainly at universities such as
Stanford, to create a well tested implementation of an open-source operating
environment for robotics. Linux, which has a long successful history on which
to rely, was the platform utilized to provide an open-source foundation.

It makes complete sense that Linux would emerge as the dominant platform
for robotics. The open-source nature of Linux, and by extension ROS, allows a

80 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

IT MAKES COMPLETE SENSE THAT
LINUX WOULD EMERGE AS THE
DOMINANT PLATFORM FOR ROBOTICS.

greater audience to access, develop and maintain a robust environment for the
development and distribution of robotics-related software. Linux is widely used
in academia as well as by home hobbyists. It's free, it's stable, and it runs on a
variety of platforms, without the need for cutting-edge hardware.

REQUIREMENTS FOR THE SRC

The Technical Coordinators for the Space Robotics Challenge had specific

software requirements for the participants of the challenge. The challenge
organizers required teams to use the Linux-based Robot Operating System
(ROS) and the 3D multi-robot simulator software package called Gazebo.

ROBOT OPERATING SYSTEM

ROS is a flexible framework for writing robot software. It is a collection of
tools, libraries and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic
platforms. The ROS ecosystem now consists of tens of thousands of users
worldwide, working in domains ranging from tabletop hobby projects to
large industrial automation systems.

ROS is mainly targeted for the Ubuntu distribution of Linux. However,
the source code is available for compilation in the many different flavors
of Linux. The Ubuntu distribution provides the easiest implementation
and the most support.

GAZEBO
Robot simulation is an essential component in every roboticist’s toolbox.
A well designed simulator makes it possible and quick to test algorithms,
design robots, perform regression testing and train artificial intelligence
(Al) systems using realistic scenarios.

Gazebo is a 3D multi-robot simulator that generates both realistic sensor
feedback and physically plausible interactions between objects, and it

81 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

GAZEBO IS A 3D MULTI-ROBOT
SIMULATOR THAT GENERATES BOTH
REALISTIC SENSOR FEEDBACK AND
PHYSICALLY PLAUSIBLE INTERACTIONS
BETWEEN OBJECTS, AND IT INCLUDES
A HIGHLY ACCURATE SIMULATION OF
RIGID-BODY PHYSICS.

includes a highly accurate simulation of rigid-body physics. Gazebo also
offers the ability to simulate populations of robots in complex indoor and
outdoor environments accurately and efficiently. It includes multiple robust
physics engines, high-quality graphics and convenient programmatic and
graphical interfaces. Best of all, Gazebo is free with a vibrant user community
that is constantly adding new simulations as well as extending existing ones.

Gazebo comes with many built-in robot simulations that are ready to
use. Some of the more interesting ones include the Atlas Robot from
Boston Dynamics; Baxter, an industrial robot, built by Rethink Robotics;
and NASA’'s Robonaut2. Many more simulations are available, and all of
them are modifiable and extendible by anyone.

INSTALLING ROS

For the SRC, the challenge rules mandated that a specific version of ROS
on a specific version of Ubuntu be used. The moderators of the challenge
wanted everyone to be working in the same environment and, therefore,
face the same challenges and have the same benefits. Specifically, teams
participating in the SRC were going to be using the ROS-Indigo version
targeted for Ubuntu Desktop 14.04 (Trusty 64-bit amd64).

USING DOCKER

Complying with the SRC technical requirements meant using ROS-Indigo
and the 14.04 version of Ubuntu. At the time, | was running a dual-boot
Windows 10 (I know, forgive me), Ubuntu 16.04 Xenial 64-bit system.

82 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

Initially, I thought this would not be a problem, as | had figured | simply
could install a Docker container running Ubuntu 14.04 and the required
versions of ROS and Gazebo.

Docker containers allow you to wrap software in a container that keeps
everything separate from the base operating system. The nice thing about
Docker containers is that there are tons of containers already available for
running various applications. | found a Docker container that was already
configured with Ubuntu 14.04. All | had to do was install Docker on my
16.04 distribution and then install the 14.04 container. The install was
fast and easy, and even though | had not used Docker previous to this, |
found plenty of instructions on the web on how to set up my container as
well as how to save various versions of the container as | installed other
pieces of software. This allowed me to roll back to a working version of
the software whenever | messed things up.

Unfortunately, even though | was able to install ROS and Gazebo in
my Docker container, | never was able to get the SRC Simulation to run
properly. | spent the better part of a weekend trying to solve the graphics
problems, but in the end, simply gave up in lieu of an easier, albeit less
elegant solution. | installed an additional hard drive in my computer and
created a tri-boot system. Now | could boot into a separate version of
Ubuntu 14.04 and install the necessary software without worrying about
conflicting drivers. As a side note, | could have run Linux from a USB stick,
but | figured | would get better performance using a hard drive. Plus, |
had a spare 1 terabyte drive lying around, so why not use it.

Installing ROS was a breeze. | simply navigated to the ROS website and
followed the instructions to install the version of ROS targeted for the indigo
distribution of Ubuntu. In less than five minutes, | had a working version of
ROS, complete with tutorials to get me up and running with total ease.

GAZEBO INSTALLATION

The SRC also mandated that teams use a specific version of Gazebo.

The version of Gazebo packaged with ROS-Indigo is version 2.x.x;

however, for the SRC, we needed to remove that version and upgrade

to the latest version, which at the time of the SRC was version 7.0.x.
After loading the correct versions of ROS and Gazebo, the next step

was to set up the SRC Simulation. The Open Source Robotics Foundation

83 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

THE ROS ENVIRONMENT ALLOWS

YOU TO CODE IN MANY LANGUAGES.
IN FACT, YOU CAN CODE IN MULTIPLE
LANGUAGES AND HAVE THEM WORK
TOGETHER SEAMLESSLY THROUGH THE
CREATION OF SEPARATE ROS NODES.

(OSRF) created and maintained the SRCSim and they provided a web page
with all of the necessary steps to perform the SRCSim installation and
setup. Links to all of the software needed to run the simulation are found
at the Resources section at end of this article.

QUALIFICATION ROUND

Once the install of the ROS, Gazebo and SRCSim software was completed
successfully, the teams would be ready to start the actual process of
coding solutions to the two qualifying tasks. The ROS environment
allows you to code in many languages. In fact, you can code in multiple
languages and have them work together seamlessly through the creation
of separate ROS nodes.

ROS nodes are basically pieces of code that help control the robot. Robot
control usually involves multiple nodes. Nodes can control things like a laser
range-finder or the motors associated with wheels on the robot. Nodes
also are used to perform path planning or to provide a graphical view of
the robot’s world. For the SRCSim, our team had nodes that controlled the
robot’s walking and the robot’s arm movement. We also had a node that
controlled the vision system for identifying LED lights.

The most often used languages for programming nodes are C/C++ and
Python, although C#, Java, Ada and Assembly, along with a variety of
other languages also will work. Our team chose Python mainly because
most of us already had some experience with the language, and because
it is a fairly easy language to pick up if you have never used it before.

The qualifying round lasted approximately three months. Three months
is not a long time when you are working a full-time job and are trying to

84 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

find any amount of spare time to work on maximizing robot performance.
In order to utilize our time as efficiently as possible, we split the team into
two sections with each section being responsible for a single qualifying
task. We also had an individual team member float between the two tasks
to pitch in wherever needed.

Working with ROS in the Linux environment involves a good deal of
command-line interaction. The ability to open multiple terminals and have
each one dedicated to various operations was a real plus. Many times, | would
have one terminal to launch the simulation, another terminal to produce
output from the robot sensors and still another window to send commands via
messaging to the robot. It was not unheard of to have five or more terminals
open at a time all communicating via the ROS messaging network.

CHALLENGE RESULTS

More than 400 teams from 55 countries around the world pre-registered
for the Space Robotics Challenge. Of those 400-plus teams, only 92 of
them submitted valid solutions for both qualifying tasks. From the 92
qualifying submissions, 20 teams qualified to move on to participate in
the Virtual Competition set for June 2017.

As a team, our goals for the challenge were simple. First and foremost,
we wanted to have fun. Second, we wanted to learn. Each of us had a
desire to become more proficient using ROS and Gazebo, while others
wanted to get some experience with Linux and Python, having never
used either of them. Finally, we wanted to be competitive. Our goal was
to submit real solutions to the two qualifying tasks in the hope that we
would be in the top 20 and move to the next round of the competition.

| am proud to say, we met all of our goals—well, almost all of them.
We did submit solutions for both tasks. Unfortunately, we fell short of
qualifying, but we definitely were competitive. All in all, it was a great
experience, and | recommend that anyone who has an interest in robotics
look seriously at utilizing the Linux stack of software mentioned in this
article as a starting point.

TEAM MEMBERS

For the Space Robotics Challenge, my team, named Patriot Robotics,
consisted of myself and four other talented individuals: Erica Kane, Dan

85 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

Sionov, Marty Kube and William Marrieta. They were an absolute pleasure
to work with. All of us are amateurs in this arena, and although some
brought a bit more experience to the team than others, we all worked
together very cohesively. | want to thank each of them for making the
experience both rewarding and enjoyable.

CONCLUSION

Working on the Space Robotics Challenge and collaborating with my team
was great fun. The truly remarkable thing about participating in the SRC
was that it cost nothing. In fact, for nothing more than the cost of your
time, you can utilize the software mentioned in this article to run the
same simulations that the Space Robotics Challenge used in its qualifying
round. The basics of ROS and Gazebo are pretty easy to pick up. Without
much effort and by using the supplied tutorials as well as other on-line

The TurtleSim Tutorial

One of the best things about ROS is that it has a very rich tutorial
library. The tutorials are a great way to come up to speed with ROS
and Gazebo. If you are interested in learning ROS, one of the first
tutorials you should try is the turtlesim.

The turtlesim teaches you how to create ROS packages, work
with multiple nodes, publish and subscribe to topics, and work with
ROS services.

The tutorial provides step-by-step instructions as well as
several online videos to walk you through the process of setting
up and running the simulation. The simulation involves hands-on
programming and command-line interaction through ROS. Learning
how to make the simulated turtle move, rotate or spawn copies of
itself are just some of the features of this tutorial.

The turtlesim is a fun and easy way to get ROS up and running.
If for no other reason than to just control a simulated turtle, |
encourage you to give it a try.

86 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com

FEATURE: Robots and Linux, a Match Made in Space

resources, anyone with little or no experience can set up and run the
software. You even can try your hand at creating solutions and seeing
if you can score well enough to have qualified for the Space Robotics
Challenge. If you do, feel free to email me your results. Good luck!m

Paul Ferretti has more than 20 years of experience as a software engineer. He is a Senior Member
of the IEEE and a former Vice Chair for the Washington DC/Northern Virginia Chapter of the IEEE
Robotics and Automation Society. He welcomes your comments sent to pferretti@ieee.org.

Send comments or feedback via
http://www.linuxjournal.com/contact

or to ljeditor@linuxjournal.com.

RETURN TO CONTENTS

Resources

ROS History: http://www.ros.org/history

About ROS: http://www.ros.org/about-ros

ROS.org, Installing from Source: http://wiki.ros.org/indigo/Installation/Source

Space Robotics Centennial Challenge:
https://ninesights.ninesigma.com/web/space-robotics-challenge

STMD: Centennial Challenges:
https://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html

Space Center, Houston: https://spacecenter.org

Johnson Space Center: https://www.nasa.gov/centers/johnson/home/index.html
Open Source Robotics Foundation: http://www.osrfoundation.org

The Institute for Human & Machine Cognition (IHMC): https://www.ihmc.us
Patriot Robotics: http://www.patriotrobotics.net

Gazebo: http://gazebosim.org

Tutorials for Gazebo: https://bitbucket.org/osrf/srcsim/wiki/tutorials

tutlesim: http://wiki.ros.org/turtlesim

87 | April 2017 | http://www.linuxjournal.com

http://www.linuxjournal.com
mailto:pferretti@ieee.org
http://www.ros.org/history
http://www.ros.org/about-ros
http://wiki.ros.org/indigo/Installation/Source
https://ninesights.ninesigma.com/web/space-robotics-challenge
https://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html
https://spacecenter.org
https://www.nasa.gov/centers/johnson/home/index.html
http://www.osrfoundation.org
https://www.ihmc.us
http://www.patriotrobotics.net
http://gazebosim.org
https://bitbucket.org/osrf/srcsim/wiki/tutorials
http://wiki.ros.org/turtlesim
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com

